

Environmental Improvement Strategies in Aquaculture Production

Manolis Tsapakis, Anastasia Tsiola, Victoria Litsi Mizan, Eugenia Apostolaki

General Concerns

Growth is followed by concerns about environmental and social impacts which include:

Release of effluents into the environment and interference with biogeochemical processes

Point of view

Prediction and evaluation of localized and dispersed effects
Assessment of mechanisms through which the environment is interacted with the marine aquaculture

- Produce tools for planning and development of aquaculture activities
- Assist with decision on number and size of farms that can be established in a body of water

Requirements for decision making

Improvements that can be implemented in aquaculture sector to reduce environmental footprint

Selected aquaculture facilities where environmental improvements have been examined

Conventional Versus Sustainable feed

Guardarmar del Segura, Alicante, Spain

Automatic Vs Handfeeding

Chios, Greece

Manual feeding

Versus

Aim: PEF reduction in different impact categories (e.g acidification, marine eutrophication)

Sensors and Cameras

Megara, Greece

SKIRONIS has installed **sensors and cameras** in pilot fish cage aiming to monitor online the behavior of fish. Based on:

- The observation of uneaten food pellets
 - The highly accurate monitoring of **fish behavior** (e.g., hunger, anxiety, stop feeding etc.)
- The **high-speed transfer** (5G technology) of the above-mentioned **data** between fish cages and computers that control the feeders

Feeding is accomplished automatically based on real-time data regarding the fish behavior

Field campaigns

Field campaigns

Water column monitoring

Particulate nutrient concentration (P, N, C)

CO₂ concentration

Dissolved nutrient concentration (nitrate, nitrite, ammonium, phosphate, silicate)

Dissolved oxygen concentration

Total suspended matter

Chl-a concentration

Water temp., salinity, pH, Secchi depth, turbidity

Data acquired from field campaigns

				Inorganic nutrient concentrations					
FISH FARM	STATION	PERIOD	Depth	Nitrate.nitrite Nitrite Nitrate Silicate Phosphate Am					Ammonium
				(µum ol/L)	(µm ol/L)	(µum ol/kg)	(µum ol/L)	(µum ol/L)	(µumol/L)
FORKYS	Control	T 1		0.180	0.012	0.167	0.693	0.010	0.190
FORKYS	Control	T 1	Surface	0.040	0.008	0.030	0.580	0.010	0.177
FORKYS	Control	T 2	Bottom	0.040	0.007	0.030	0.643	0.010	0.217
FORKYS	Control	T 2	Surface	0.110	0.008	0.100	0.613	0.013	0.163
FORKYS	Control	T 3	Bottom	0.043	0.007	0.033	0.723	0.010	0.150
FORKYS	Control	ТЗ	Surface	0.073	0.007	0.070	0.610	0.013	0.210
FORKYS	Control	T 4	Bottom	0.063	0.007	0.057	0.757	0.010	0.090
FORKYS	Control	T 4	Surface	0.067	0.007	0.030	0.600	0.010	0.207
FORKYS	Cage1	T 1	Bottom	0.137	0.050	0.080	1.483	0.050	0.177
FORKYS	Cage 1	T 1	Surface	0.043	0.009	0.030	0.597	0.010	0.733
FORKYS	Cage1	T 2	Bottom	0.173	0.047	0.127	1.357	0.077	0.227
FORKYS	Cage1	T 2	Surface	0.047	0.008	0.037	0.583	0.013	0.983
FORKYS	Cage1	ТЗ	Bottom	0.147	0.066	0.080	1.680	0.153	0.380
FORKYS	Cage1	ТЗ	Surface	0.047	0.007	0.040	0.670	0.013	0.757
FORKYS	Cage1	T 4	Bottom	0.087	0.029	0.053	1.397	0.083	0.190
FORKYS	Cage1	T 4	Surface	0.097	0.007	0.093	0.637	0.010	0.950
FORKYS	Cage 2	T 1	Bottom	0.050	0.010	0.037	1.137	0.217	0.427
FORKYS	Cage 2	T 1	Surface	0.103	0.017	0.090	0.740	0.023	2.053
FORKYS	Cage 2	T 2	Bottom	0.060	0.012	0.047	1.130	0.083	0.260
FORKYS	Cage 2	T 2	Surface	0.050	0.015	0.033	0.670	0.027	2.393
FORKYS	Cage 2	ТЗ	Bottom	0.097	0.012	0.090	1.137	0.110	0.210
FORKYS	Cage 2	ТЗ	Surface	0.100	0.010	0.090	0.723	0.030	1.780
FORKYS	Cage 2	T 4	Bottom	0.107	0.032	0.073	1.603	0.120	0.257
FORKYS	Cage 2	T 4	Surface	0.067	0.009	0.057	0.703	0.033	2.377
SKIRONIS	Control	T 1	Bottom	0.4	0.1435	0.255	1.795	0.105	0.16
SKIRONIS	Control	T 1	Surface	0.045	0.007	0.035	0.93	0.01	0.155
SKIRONIS	Control	T 2	Bottom	0.15	0.0685	0.08	1.275	0.025	0.315
SKIRON	Control	T 2	Surface	0.04	0.0085	0.03	0.875	0.01	0.15
SKIRONIS	Control	ТЗ	Bottom	0.15	0.03	0.115	1.21	0.015	0.275
SKIRONIS	Control	T 3	Surface	0.065	0.0135	0.055	0.8	0.01	0.165
SKIRONIS	Control	T 4	Bottom	0.04	0.02	0.03	1.035	0.01	0.13
SKIRONIS	Control	T 4	Surface	0.04	0.015	0.03	0.855	0.01	0.23
SKIRONIS	Control	T 5	Bottom	0.04	0.04	0.03	1.12	0.01	0.21
SKIRONIS	Control	T 5	Surface	0.04	0.01	0.03	0.85	0.01	0.09
SKIRONIS	Control	T 6	Bottom	0.04	0.02	0.03	0.93	0.01	0.15
SKIRONIS	Control	T 6	Surface	0.04	0.007	0.03	0.83	0.01	0.09
SKIRONIS	Cage1	T 1	Bottom	0.15	0.06	0.09	1.4	0.025	0.175
SKIRONIS	Cage1	T 1	Surface	0.085	0.007	0.08	0.965	0.015	0.885
SKIRONIS	Cage1	T 2	Bottom	0.365	0.15	0.215	1.675	0.125	0.285
SKIRONIS	Cage1	T 2	Surface	0.045	0.007	0.035	0.9	0.015	0.925
SKIRONIS	Cage1	ТЗ	Bottom	0.525	0.205	0.325	1.92	0.15	0.205
SKIRONIS	Cage1	Т 3	Surface	0.04	0.015	0.03	0.88	0.01	0.46
SKIRONIS	Cage1	T 4	Bottom	0.04	0.015	0.03	0.9	0.01	0.15
SKIRONIS	Cage1	T 4	Surface	0.04	0.015	0.03	0.97	0.01	1.065
SKIRONIS	Cage1	Τ5	Bottom	0.04	0.02	0.03	1.14	0.01	0.15
SKIRONIS	Cage1	T 5	Surface	0.04	0.02	0.03	0.94	0.01	1.44
SKIRONIS	Cage1	T 6	Bottom	0.04	0.02	0.03	1.15	0.01	0.16
SKIRONIS	Cage1	T 6	Surface	0.04	0.02	0.03	0.84	0.01	0.66
SKIRONIS	Cage 2	T 1	Bottom	0.535	0.18	0.355	2.23	0.245	0.34
SKIRONIS	Cage 2	Τ1	Surface	0.075	0.007	0.075	0.935	0.015	0.81
SKIRONIS	Cage 2	T 2	Bottom	0.785	0.2	0.585	2.865	0.33	0.395
SKIRONIS	Cage 2	T 2	Surface	0.04	0.0235	0.03	0.92	0.01	0.68
SKIRONIS	Cage 2	ТЗ	Bottom	0.65	0.18	0.465	2.025	0.18	0.885
SKIRONIS	Cage 2	ТЗ	Surface	0.04	0.0135	0.03	0.845	0.015	1.24
SKIRONIS	Cage 2	T 4	Bottom	0.07	0.04	0.04	1.21	0.015	0.25
SKIRONIS	Cage 2	T 4	Surface	0.055	0.02	0.04	0.9	0.02	3.435
SKIRONIS	Cage 2	Τ 5	Bottom	0.04	0.03	0.03	0.99	0.01	0.19
SKIRONIS	Cage 2	T 5	Surface	0.04	0.02	0.03	0.83	0.01	1.3
SKIRONIS	Cage 2	Т 6	Bottom	0.04	0.02	0.03	1.09	0.01	0.19
SKIRONIS	Cage 2	T 6	Surface	0.04	0.01	0.03	0.88	0.01	0.5

Results - Water Column Monitoring

DON

MPROVEMENT

J.K

NON

DON

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0.0

POP

Results - Water Column Monitoring

Incorporation of results in AquaPEF tool

Use of most relevant indices into ecological eutrophication indicators such as trophic index TRIX (Vollemweider *et al.* 1998) and eutrophication index E.I (Primpas *et al.* 2010) that show the highest potential of incorporation in the current LCA approaches.

TRIX= $[\log 10(C_{PO4} * C_{DIN} * C_{chla} * D \% O2) + 1.5]/1.2$

 $\textbf{E.I} = 0.279 * C_{PO4} + 0.261 * C_{NO3 +} \\ 0.296 * C_{NO2} + 0.2975 * C_{NH4} + 0.261 * C_{Chla} + 0.2$

These parameters can complement the PEF calculation in relation to the impact in marine eutrophication

> Assess the contribution of implemented ecological improvements to its reduction.

Looking forward

- > The **demand** for fish and fish products is now higher than ever.
- Sustainable aquaculture production is crucial for further development
 - Improvement strategies could reduce significantly environmental footprint
 - AQUAPEF tool could promote the calculation and improvement of environmental behavior of the aquaculture products

THANK YOU

For any further questions please email me at tsapakis@hcmr.gr

DELIVERABLES

B.3.1. Review of the environmental improvements in aquaculture facilities

B.3.2. List of aquaculture facilities that environmental improvements have been undertaken

B.3.3. Field campaign and data report from ecological quality monitoring